If $\cos ec\,\theta  = \frac{{p + q}}{{p - q}}$ $\left( {p \ne q \ne 0} \right)$, then $\left| {\cot \left( {\frac{\pi }{4} + \frac{\theta }{2}} \right)} \right|$ is equal to

  • [JEE MAIN 2014]
  • A

    $\sqrt {\frac{p}{q}} $

  • B

    $\sqrt {\frac{q}{p}} $

  • C

    $\sqrt {pq} $

  • D

    $pq$

Similar Questions

If $\alpha ,$ $\beta$ are different values of $x$ satisfying $a\cos x + b\sin x = c,$ then $\tan {\rm{ }}\left( {\frac{{\alpha + \beta }}{2}} \right) = $

If $\left| {\,\begin{array}{*{20}{c}}{\cos (A + B)}&{ - \sin (A + B)}&{\cos 2B}\\{\sin A}&{\cos A}&{\sin B}\\{ - \cos A}&{\sin A}&{\cos B}\end{array}\,} \right| = 0$, then $B =$

Find the general solution of the equation $\sec ^{2} 2 x=1-\tan 2 x$

If $\cos 7\theta = \cos \theta - \sin 4\theta $, then the general value of $\theta $ is

Number of roots of the equation ${\cos ^2}x + \frac{{\sqrt 3  + 1}}{2}\sin x - \frac{{\sqrt 3 }}{4} - 1 = 0$ which lie in the interval $[-\pi,\pi ]$ is